Visibility Graphs of Staircase Polygons

Yulia Alexandr
Mentor: Prof. James Abello
NSF grant CCF-1559855

Let me remind you...

- We consider a simple non-degenerate collection of points in the plane that produces a polygon
- In particular, we look at staircase polygon paths
- Two vertices of a polygon are called internally visible if the closed line segment between them is either an edge of the polygon or lies entirely in the interior of the polygon (Abello et al)
- The visibility graph of a polygon is a graph whose vertex set is the same as the vertex set of the polygon
 and whose edges are the straight-line segments between internally visible vertices

Balanced Tableau

- Hook of a cell is the collection of cells that includes the chosen cell with all the cells above it and all the cells to the right
- Mate cells with respect to the chosen cell
- A tableau is balanced if the value of every cell lies in between every pair of mate cells in its hook
- (!) Tableau represents slope ranks in a staircase path on n vertices

Local Max (Min) Rule

- Apply the rule to obtain the adjacency matrix

Problem Statement

Problem Statement:

Input: A balanced tableau T_{n}
Output: Build a staircase polygon s.t. its visibility graph is isomorphic to localmax $\left(T_{n}\right)$

- The problem is known to be PSPACE
- We also want to know whether it is NP or P

What I tried:

- Random Stuff
- Convex Hull Approach
- Inductive Approach
: / ;
- Visibility Regions Approach

Visibility Regions Approach

- Starts building from the middle
- Takes advantage of unboundedness
- Forms a visibility region to place each new vertex

Example

Example

Example

Example

Example

Example

Too good to be true...

- Can visibility regions be empty?

Too good to be true...

- Can visibility regions be empty? Yep.

Too good to be true...

- Can visibility regions be empty? Yep.
-Why?

Too good to be true...

- Can visibility regions be empty? Yep.
- Why? Research is hard.

Too good to be true...

- Can visibility regions be empty? Yep.
- Why? Research is hard.
- What makes them empty?

Too good to be true...

- Can visibility regions be empty? Yep.
- Why? Research is hard.
- What makes them empty? Not preserving slope ranks of farthest seen vertices!!

What I proved:

- Regions are never empty as long as we preserve slope ranks of farthest seen vertices at each stage of construction
- Concave-concave (convex-convex)
- Concave-convex (convex-concave)
- General case

What I proved:

- Regions are never empty as long as we preserve slope ranks of farthest seen vertices at each stage of construction
- Concave-concave (convex-convex)
- Concave-convex (convex-concave)
- General case
- It is always possible to preserve slope ranks of farthest seen vertices

What's left:

- Determine complexity
- Double check and polish proofs
- Finalize results for publication

Acknowledgements:

- Prof. James Abello
- DIMACS and Prof. Gallos
- NSF grant CCF-1559855

Thanks! :

- References:
- [1] Abello et al, Visibility Graphs of Staircase Polygons and the Weak Bruhat Order, I: from Visibility Graphs to Maximal Chains*. Discrete \& Computational Geometry. 1995. 331-358.

